28,675 research outputs found

    Coupling vector and pseudoscalar mesons to study baryon resonances

    Full text link
    A study of meson-baryon systems with total strangeness -1 is made within a framework based on the chiral and hidden local symmetries. These systems consist of octet baryons, pseudoscalar and vector mesons. The pseudoscalar meson-baryon (PB) dynamics has been earlier found determinant for the existence of some strangeness -1 resonances, for example, Λ(1405)\Lambda(1405), Λ(1670)\Lambda(1670), etc. The motivation of the present work is to study the effect of coupling the closed vector meson-baryon (VB) channels to these resonances. To do this, we obtain the PBPBPB \rightarrow PB and VBVBVB \rightarrow VB amplitudes from the t-channel diagrams and the PBVBPB \leftrightarrow VB amplitudes are calculated using the Kroll-Ruddermann term where, considering the vector meson dominance phenomena, the photon is replaced by a vector meson. The calculations done within this formalism reveal a very strong coupling of the VB channels to the Λ(1405)\Lambda(1405) and Λ(1670)\Lambda(1670). In the isospin 1 case, we find an evidence for a double pole structure of the Σ(1480)\Sigma (1480) which, like the isospin 0 resonances, is also found to couple strongly to the VB channels. The strong coupling of these low-lying resonances to the VB channels can have important implications on certain reactions producing them.Comment: Minor typos corrected (in Eq.(22) and axis-labels of some figures

    Plausible explanation of the Δ5/2+(2000)\Delta_{5/2^{+}}(2000) puzzle

    Full text link
    From a Faddeev calculation for the π(Δρ)N5/2(1675)\pi-(\Delta\rho)_{N_{5/2^{-}}(1675)} system we show the plausible existence of three dynamically generated I(JP)=3/2(5/2+)I(J^{P})=3/2 (5/2^{+}) baryon states below 2.3 GeV whereas only two resonances, Δ5/2+(1905)()\Delta_{5/2^{+}}(1905)(\ast\ast\ast\ast) and Δ5/2+(2000)(),\Delta_{5/2^{+}}(2000)(\ast\ast), are cataloged in the Particle Data Book Review. Our results give theoretical support to data analyses extracting two distinctive resonances, Δ5/2+(1740)\Delta_{5/2^{+}}(\sim1740) and Δ5/2+(2200),\Delta_{5/2^{+}}(\sim2200), from which the mass of Δ5/2+(2000)()\Delta_{5/2^{+}}(2000)(\ast\ast) is estimated. We propose that these two resonances should be cataloged instead of Δ5/2+(2000).\Delta_{5/2^{+}}(2000). This proposal gets further support from the possible assignment of the other baryon states found in the approach in the I=1/2,3/2I=1/2,3/2 with JP=1/2+,3/2+,5/2+J^{P}=1/2^{+},3/2^{+},5/2^+ sectors to known baryonic resonances. In particular, Δ1/2+(1750)()\Delta_{1/2^{+}}(1750)(\ast) is naturally interpreted as a πN1/2(1650)\pi N_{1/2^{-}}(1650) bound state.Comment: 13 pages, 7 figure

    Solution to Faddeev equations with two-body experimental amplitudes as input and application to J^P=1/2^+, S=0 baryon resonances

    Get PDF
    We solve the Faddeev equations for the two meson-one baryon system ππN\pi\pi N and coupled channels using the experimental two-body tt-matrices for the πN\pi N interaction as input and unitary chiral dynamics to describe the interaction between the rest of coupled channels. In addition to the N(1710)N^*(1710) obtained before with the ππN\pi\pi N channel, we obtain, for Jπ=1/2+J^\pi=1/2^+ and total isospin of the three-body system I=1/2I=1/2, a resonance peak whose mass is around 2080 MeV and width of 54 MeV, while for I=3/2I=3/2 we find a peak around 2126 MeV and 42 MeV of width. These two resonances can be identified with the N(2100)N^* (2100) and the Δ(1910)\Delta (1910), respectively. We obtain another peak in the isospin 1/2 configuration, around 1920 MeV which can be interpreted as a resonance in the Na0(980)N a_0(980) and Nf0(980)N f_0(980) systems.Comment: published versio
    corecore